4,131 research outputs found

    Archeops: an instrument for present and future cosmology

    Full text link
    Archeops is a balloon-borne instrument dedicated to measure the cosmic microwave background (CMB) temperature anisotropies. It has, in the millimetre domain (from 143 to 545 GHz), a high angular resolution (about 10 arcminutes) in order to constrain high l multipoles, as well as a large sky coverage fraction (30%) in order to minimize the cosmic variance. It has linked, before WMAP, Cobe large angular scales to the first acoustic peak region. From its results, inflation motivated cosmologies are reinforced with a flat Universe (Omega_tot=1 within 3%). The dark energy density and the baryonic density are in very good agreement with other independent estimations based on supernovae measurements and big bang nucleosynthesis. Important results on galactic dust emission polarization and their implications for Planck are also addressed.Comment: 4 pages, 2 figures, to appear in Proceedings of the Multiwavelength Cosmology Conference, June 2003, Mykonos Island, Greec

    Quantum microscopic approach to low-energy heavy ion collisions

    Get PDF
    The Time-dependent Hartree-Fock (TDHF) theory is applied to the study of heavy ion collisions at energies around the Coulomb barrier. The competition between fusion and nucleon transfer mechanisms is investigated. For intermediate mass systems such as 16O+208Pb, proton transfer favors fusion by reducing the Coulomb repulsion. A comparison with sub-barrier transfer experimental data shows that pairing correlations are playing an important role in enhancing proton pair transfer. For heavier and more symmetric systems, a fusion hindrance is observed due to the dominance of the quasi-fission process. Typical quasi-fission time of few zeptoseconds are obtained. Actinide collisions are also investigated both within the TDHF approach and with the Ballian-V\'en\'eroni prescription for fluctuation and correlation of one-body observables. The possible formation of new heavy neutron-rich nuclei in actinide collisions is discussed.Comment: Invited Plenary Talk given at NN201

    Modeling high-energy pulsar lightcurves from first principles

    Full text link
    Current models of gamma-ray lightcurves in pulsars suffer from large uncertainties on the precise location of particle acceleration and radiation. Here, we present an attempt to alleviate these difficulties by solving for the electromagnetic structure of the oblique magnetosphere, particle acceleration, and the emission of radiation self-consistently, using 3D spherical particle-in-cell simulations. We find that the low-energy radiation is synchro-curvature radiation from the polar-cap regions within the light cylinder. In contrast, the high-energy emission is synchrotron radiation that originates exclusively from the Y-point and the equatorial current sheet where relativistic magnetic reconnection accelerates particles. In most cases, synthetic high-energy lightcurves contain two peaks that form when the current sheet sweeps across the observer's line of sight. We find clear evidence of caustics in the emission pattern from the current sheet. High-obliquity solutions can present up to two additional secondary peaks from energetic particles in the wind region accelerated by the reconnection-induced flow near the current sheet. The high-energy radiative efficiency depends sensitively on the viewing angle, and decreases with increasing pulsar inclination. The high-energy emission is concentrated in the equatorial regions where most of the pulsar spindown is released and dissipated. These results have important implications for the interpretation of gamma-ray pulsar data.Comment: 14 pages, 11 figures, Accepted for publication in MNRA

    Delay aversion

    Get PDF
    We address the following question: When can one person properly be said to be more delay averse than another? In reply, several (nested) comparison methods are developed. These methods yield a theory of delay aversion which parallels that of risk aversion. The applied strength of this theory is demonstrated in a variety of dynamic economic settings, including the classical optimal growth and tree cutting problems, repeated games, and bargaining. Both time-consistent and time-inconsistent scenarios are considered.Delay aversion, impatience, consumption smoothing, time consistency

    Analysis of Nonlinear Noisy Integrate\&Fire Neuron Models: blow-up and steady states

    Full text link
    Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter

    Post-Reconstruction Deconvolution of PET Images by Total Generalized Variation Regularization

    Full text link
    Improving the quality of positron emission tomography (PET) images, affected by low resolution and high level of noise, is a challenging task in nuclear medicine and radiotherapy. This work proposes a restoration method, achieved after tomographic reconstruction of the images and targeting clinical situations where raw data are often not accessible. Based on inverse problem methods, our contribution introduces the recently developed total generalized variation (TGV) norm to regularize PET image deconvolution. Moreover, we stabilize this procedure with additional image constraints such as positivity and photometry invariance. A criterion for updating and adjusting automatically the regularization parameter in case of Poisson noise is also presented. Experiments are conducted on both synthetic data and real patient images.Comment: First published in the Proceedings of the 23rd European Signal Processing Conference (EUSIPCO-2015) in 2015, published by EURASI
    corecore